Electromagnetic Waves

- 1. A plane electromagnetic wave of frequency 50 MHz travels in free space along the positive x-direction. At a particular point in space and time, $\vec{E} = 6.3\hat{j}$ V/m. The corresponding magnetic field \vec{B} , at that point is $x \times 10^{-8} \hat{k}$. Find the value of x.
- 2. If the magnetic field of a plane electromagnetic wave is given by (The speed of light = 3×10^8 m/s) B = $100 \times 10^{-6} \sin \left[2\pi \times 2 \times 10^{15} \left(t \frac{x}{c} \right) \right]$ then the maximum electric field (in N/C) associated with it is:
- 3. A 27 mW laser beam has a cross-sectional area of 10 mm². The magnitude of the maximum electric field (in kV/m) in this electromagnetic wave is given by : [Given permittivity of space $\epsilon_0 = 9 \times 10^{-12}$ SI units, Speed of light $c = 3 \times 10^8$ m/s]
- 4. The mean intensity of radiation on the surface of the Sun is about 10^8 W/m². The rms value of the corresponding magnetic field (in tesla) is :
- 5. The magnetic field of a plane electromagnetic wave is given by: $\vec{B} = B_0 \hat{\imath} [\cos{(kz \omega t)}] + B_1 \hat{\jmath} \cos{(kz + \omega t)}$ Where $B_0 = 3 \times 10^{-5}$ T and $B_1 = 2 \times 10^{-6}$ T. The rms value of the force (in newton) experienced by a stationary charge $Q = 10^{-4}$ C at z = 0 is:
- 6. 50 W/m^2 energy density of sunlight is normally incident on the surface of a solar panel. Some part of incident energy (25%) is reflected from the surface and the rest is absorbed. The force (in newton) exerted on 1 m^2 surface area will be ($c = 3 \times 10^8 \text{ m/s}$):
- 7. A light beam travelling in the x-direction is described by the electric field $E_y = 300 \sin \omega \left(t \frac{x}{c}\right)$. An electron is constrained to move along the y-direction with a speed of 2.0×10^7 m/s. Find the maximum electric force (in newton) on the electron.
- 8. A laser beam has intensity $2.5 \times 10^{14} \frac{W}{m^2}$. Find the amptitude of electric field (in V/m) in the beam.
- 9. Light is incident normally on a completely absorbing surface with an energy flux of 25Wcm⁻². If the surface has an area of 25 cm², the momentum (in Ns) transferred to the surface in 40 min time duration will be:
- 10. In a wave $E_0 = 100 \, \mathrm{Vm^{-1}}$. Find the magnitude of Poynting's vector in watt $\mathrm{m^{-2}}$.
- 11. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength (in volt m^{-1}) is
- 12. A new system of unit is evolved in which the values of μ_0 and ϵ_0 are 2 and 8 respectively. Then the speed of light in this system will be
- 13. A plane electromagnetic wave of wave intensity 10 W/m^2 strikes a small mirror of area 20 cm^2 , held perpendicular to the approaching wave. The radiation force (in newton) on the mirror will be
- 14. Radiations of intensity 0.5 W/m^2 are striking on a perfectly reflecting metal plate. The pressure (in N/m²) on the plate is
- 15. The electric field associated with an e.m. wave in vacuum is given by $\vec{E} = \hat{\imath}40\cos{(kz 6 \times 10^8 t)}$, where E, z and t are in volt /m, meter and seconds respectively. The value of wave vector k(in metre $^{-1})$ is

SOLUTIONS

1. (2.1) As we know,

$$|\vec{B}| = \frac{|\vec{E}|}{C} = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \text{ T}$$

and $\hat{E} \times \hat{B} = \hat{C}$

 $\hat{J} \times \hat{B} = \hat{i} [: EM \text{ wave travels along } +(ve)x\text{-direction.}]$

$$\therefore \hat{B} = \hat{k} \text{ or } \vec{B} = 2.1 \times 10^{-8} \hat{k}T$$

2. $(3 \times 10^4 \text{ N/C})$ Using, formula $E_0 = B_0 \times C$

$$= 100 \times 10^{-6} \times 3 \times 10^{8}$$

$$= 3 \times 10^4 \text{ N/C}$$

Here we assumed that

$$B_0 = 100 \times 10^{-6}$$
 is in tesla (T) units

3. (1.4) EM wave intensity

$$\Rightarrow I = \frac{Power}{Area} = \frac{1}{2} \epsilon_0 E_0^2 c$$

[where E_0 = maximum electric field]

$$\Rightarrow \frac{27 \times 10^{-3}}{10 \times 10^{-6}} = \frac{1}{2} \times 9 \times 10^{-12} \times E_0^2 \times 3 \times 10^8$$

$$\Rightarrow$$
 E₀ = $\sqrt{2} \times 10^3 \text{ kV} / \text{m} = 1.4 \text{kV} / \text{m}$

4.
$$(6 \times 10^{-4}) I = \frac{B_0^2}{2\mu_0} \cdot C$$

$$\Rightarrow \frac{B_0^2}{2} = \frac{I\mu_0}{C} \Rightarrow B_{rms} = \sqrt{\frac{I\mu_0}{C}}$$

$$= \sqrt{\frac{10^8 \times 4\pi \times 10^{-7}}{3 \times 10^8}} \ \simeq 6 \times 10^{-4} \, T$$

5. (0.64)
$$B_0 = \sqrt{B_0^2 + B_1^2} = \sqrt{30^2 + 2^2} \times 10^{-6}$$

$$\approx 30 \times 10^{-6} \text{T}$$

$$E_0 = cB = 3 \times 10^8 \times 30 \times 10^{-6}$$

$$= 9 \times 10^3 \text{ V/m}$$

$$E_{\rm rms} = \frac{E_0}{\sqrt{2}} = \frac{9}{\sqrt{2}} \times 10^3 V / m$$

Force on the charge,

$$F = E_{rms}Q = \frac{9}{\sqrt{2}} \times 10^3 \times 10^{-4} \simeq 0.64N$$

6. (20 × 10⁻⁸)
$$F = (1+r)\frac{IA}{C}$$

$$=\frac{(1+0.25)\times50\times1}{3\times10^8}$$

$$\approx 20 \times 10^{-8} \text{N}$$

7. **(4.8 × 10**⁻⁷)
$$E_0 = 300 \text{ V/m},$$

$$\therefore B_0 = \frac{E_0}{C} = \frac{300}{3 \times 10^8} = 1 \times 10^{-6} \text{ N/A-m}$$

The maximum electric force,

$$F_0 = E_0 q = 300 \times 1.6 \times 10^{-19}$$

= 4.8×10^{-7} N.

8. (4.3×10^8) The intensity is given by

$$I = \frac{1}{2} \in_0 E^2 C$$

or
$$2.5 \times 10^{14} = \frac{1}{2} \times (8.86 \times 10^{-12}) \times E_0^2 \times (3 \times 10^8)$$

:.
$$E_0 = 4.3 \times 10^8 \,\text{V/m}$$

9. (5 × 10⁻³) Pressure,
$$P = \frac{I}{C}$$

$$\Rightarrow \frac{F}{A} = \frac{I}{C} \Rightarrow F = \frac{IA}{C} = \frac{\Delta p}{\Delta t}$$

$$\Rightarrow \quad \Delta p = \frac{I}{C} A \Delta t$$

$$=\frac{(25\times25)\times10^{4}\times10^{-4}\times40\times60}{3\times10^{8}}$$
N-s

$$= 5 \times 10^{-3} \text{ N-s}$$

10. (26.5)
$$|\vec{S}| = \frac{EB}{\mu_0} = \frac{E^2}{C\mu_0} = \frac{10^4}{3 \times 10^8 \times 4\pi \times 10^{-7}} = 26.5 \text{ Wm}^{-2}$$

11. **(6)**
$$E_0 = B_0 C = 20 \times 10^{-9} \times 3 \times 10^8 = 6 \text{ v/m}$$

$$C = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = \frac{1}{\sqrt{2 \times 8}} = \frac{1}{4} = 0.25$$

13.
$$(1.33 \times 10^{-10})$$

14.
$$(0.332 \times 10^{-8})$$

$$\vec{E} = a_0 \hat{i} \cos(\omega t - kz), \ \omega = 6 \times 10^8, \ k = \frac{2p}{1} = \frac{w}{c}$$

$$k = \frac{\omega}{c} = \frac{6 \times 10^8}{3 \times 10^8} = 2 \,\mathrm{m}^{-1}$$

